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A continuous dynamic beam model for
swimming ®sh

J.-Y. Cheng1, T. J. Pedley1* and J. D. Altringham2

1Department of Applied Mathematical Studies and 2Department of Biology, University of Leeds, Leeds LS2 9JT, UK

When a ¢sh swims in water, muscle contraction, controlled by the nervous system, interacts with the body
tissues and the surrounding £uid to yield the observed movement pattern of the body. A continuous dynamic
beam model describing the bending moment balance on the body for such an interaction during swimming
has been established. In the model a linear visco-elastic assumption is made for the passive behaviour of
internal tissues, skin and backbone, and the unsteady £uid force acting on the swimming body is calculated
by the 3D waving plate theory. The body bending moment distribution due to the various components, in
isolation and acting together, is analysed.The analysis is based on the saithe (Pollachius virens), a carangiform
swimmer. The £uid reaction needs a bending moment of increasing amplitude towards the tail and near-
standing wave behaviour on the rear-half of the body.The inertial movement of the ¢sh results from a wave
of bending moment with increasing amplitude along the body and a higher propagation speed than that of
body bending. In particular, the £uid reaction, mainly designed for propulsion, can provide a considerable
force to balance the local momentum change of the body and thereby reduce the power required from the
muscle. The wave of passive visco-elastic bending moment, with an amplitude distribution peaking a little
before the mid-point of the ¢sh, travels with a speed close to that of body bending. The calculated muscle
bending moment from the whole dynamic system has a wave speed almost the same as that observed for
electromyogram-onset and a starting instant close to that of muscle activation, suggesting a consistent
matchingbetween themuscle activationpattern and the dynamic response of the system in steady swimming.
A faster wave of muscle activation, with a variable phase relation between the strain and activation cycle,
appears to be designed to ¢t the £uid reaction and, to a lesser extent, the body inertia, and is limited by the
passive internal tissues. Higher active stress is required from caudal muscle, as predicted from experimental
studies on ¢sh muscle. In general, the active force development by muscle does not coincide with the
propulsive force generation on the tail. The sti¡er backbone may play a role in transmitting force and
deformation to maintain and adjust the movement of the body and tail in water.

Keywords: ¢sh; hydrodynamics; muscle activation; muscle mechanics; swimming

1. INTRODUCTION

The lateral movement of a ¢sh body is produced by
activation of its muscles. When the ¢sh swims in water,
the muscles, controlled by the nervous system, contract in
such a way that their interaction with the tissues of the
body and the surrounding £uid will result in the observed
pattern of body movement and generate the thrust needed
to overcome viscous drag. How the body movement in
water produces propulsion and how the propulsive
performance di¡ers between various swimming modes
can be studied by hydrodynamical analysis. Since
Lighthill's pioneering work (Lighthill 1960), there has
been considerable progress in understanding many
aspects of ¢sh hydrodynamics (Wu 1971a; Lighthill 1975;
Webb & Weihs 1983; Karpouzian et al. 1990; Lighthill &
Blake 1990).

Recent electromyography experiments on swimming
¢sh (Williams et al. 1989; van Leeuwen et al. 1990; Kesel et
al. 1992; Wardle & Videler 1993) have provided the time

course of muscle activation (electromyogram (EMG)
activity) in relation to bending along the body of
swimming ¢sh of various species. It was found that
during steady swimming the muscle elements (myotomes)
are activated by a wave of motor neuron activity which
travels from the head (rostral) towards the tail (caudal).
The propagation speed of EMG-onset is somewhat higher
than that of the bending wave, whereas that of EMG-
termination is much higher, almost a standing wave.

Altringham & Johnston (1990a,b) studied the power
output of ¢sh muscle ¢bres under locomotory conditions,
simulating their activity at di¡erent swimming speeds,
and investigating the relation between ¢sh size and
muscle dynamic behaviour. The properties of muscle
¢bres in saithe were found to vary along the length of the
body, probably to optimize the transmission of power to
the tail (Altringham et al. 1993; see Wardle et al. 1995 for
review).

To understand how muscle contraction interacts with
the mechanical properties and dynamic processes of the
body and surrounding £uid to achieve the required body
movements, various theoretical models have been
proposed. By using a constitutive relation for sarcomeres,
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van Leeuwen et al. (1990) analysed the function of red
muscle at di¡erent positions on the body in a swimming
carp. The distribution of bending moment required to
balance hydrodynamic force and body inertia in a
swimming saithe has been studied on the basis of a
continuous beam model, with £uid force calculated either
by Lighthill's (1971) elongated-body theory (Hess &
Videler 1984), or by the 3D waving plate theory for a
body shape of uniform depth (Cheng & Blickhan 1994).
These studies have made it clear that the observed
undulatory motion of a ¢sh in water is produced by a
wave of bending moment in the body whose propagation
speed is di¡erent from, and on average much greater than,
that of the lateral undulation wave, though the bending
moment wave is not in general a standing wave.

It should be noted that this overall bending moment is
not equivalent to the bending moment generated directly
by muscle contraction, although that is the only power
source for ¢sh swimming. The body bending is also
subject to mechanical constraints imposed by the internal
structure. Hebrank (1982) has studied the role of the back-
bone in ¢sh swimming, and suggested that the mechanical
properties of the backbone are tuned to ¢t the particular
swimming modes used. The functions of ¢sh skin during
body bending for locomotion have been studied by Wain-
wright et al. (1978) for the shark, and by Hebrank (1980)
for the eel. They suggested that the skin, composed
largely of a crossed-helical array of ¢bres, may act as an
external tendon to transmit the force of muscle contraction
and displacement down the length of the ¢sh. In general,
all skeletal elements within the body, such as connective
tissues, skin and backbone, and passive muscle ¢bres them-
selves, are subjected to deformation during swimming and
therefore generate stresses which oppose that deformation.
The bending of the body will therefore be modi¢ed or
limited by their dynamic properties. The dynamic e¡ect
of all elements of the body when they experience strain
must be considered in modelling body dynamics for
swimming ¢sh. Bowtell & Williams (1991) have proposed
a discrete dynamic model for the lamprey, including tissue
mechanics represented by a number of springs and
dashpots but without consideration of the £uid reaction.
They have subsequently improved their model by allowing
continuous deformation of the body (Bowtell & Williams
1993).

In this paper we propose a continuous beam model for
a swimming ¢sh, describing the interaction of muscle
contraction with all the body tissues and the surrounding
£uid. From the ¢sh's point of view, input to the swimming
process is the signal that propagates along the spinal cord,
activating the muscles alternately on either side of the ¢sh.
At any instant, a muscle contracts at a rate determined by
its current length, the level of activation, the load against
which it is contracting, and its past history.The load comes
from the visco-elastic properties of the ¢sh body, its
inertia, and the hydrodynamics. The ¢sh integrates all
these features to produce the observed wave of bending.

However, input to our model must be something
measurable, and the easiest quantity to measure is the
wave of displacement of the ¢sh's median surface from a
£at plane (Videler & Hess 1984; Wardle & Videler 1993).
We used as input the observed wave of body displacement
(or bending) in the saithe, a carangiform swimmer for

which as much data are available as for any other species,
from Videler & Hess (1984). Then we worked both
outwards, analysing the hydrodynamics to compute the
load exerted on the ¢sh surface by the water, and
inwards, analysing the visco-elastic stresses in the body.

As in almost all studies of ¢sh hydrodynamics
(Lighthill 1960, 1971, 1975; Wu 1971a; Cheng et al. 1991),
we conceptually separate the production of thrust, by the
essentially non-viscous reaction of the water to lateral
movements of the body, from the countervailing drag
generated by longitudinal inertia (mass�acceleration), so
if we can use the observed motions to calculate the thrust
and longitudinal acceleration, we can infer the drag.
However, in this paper we are concerned not with the
overall thrust and drag but with the time-varying distri-
bution of lateral forces along the body, because it is these
that are generated by the bending of the body and that
contribute to the distribution of bending moment. In the
present small-amplitude model we are justi¢ed in
neglecting the small contribution that the longitudinal
viscous stresses may make to the bending moment
distribution (Wu 1971b; Hess & Videler 1984).

A further (commonly made) assumption of the hydro-
dynamic part of our model is that the ¢sh is swimming at
a constant speed U. Although the calculated thrust varies
during `steady' swimming, from close to zero to about
twice its mean value, the corresponding £uctuations in
velocity have been estimated by Hess & Videler (1984),
taking into account body inertia as well as drag, as only
�2%, so we neglect them. We use the 3D waving plate
theory of Cheng et al. (1991), rather than Lighthill's
elongated-body theory (1975), because, although it is as
yet restricted to small amplitude displacement waves, it
does not neglect the feedback from the vortex wake onto
the ¢sh and appears to be more accurate in the sense that
it requires less `recoil correction' (see ½ 3; Cheng et al.
1991).

The solid-mechanics part of our model is explained in
the following sections. In short, we follow Hess & Videler
(1984) in showing how the transverse hydrodynamic
forces, together with ¢sh body inertia, combine to require
the generation of a certain distribution of bending moment
by the ¢sh.

The new aspect of our model is to separate that bending
moment into contributions from the passive mechanical
properties of the (visco-elastic) tissues and from the
active contraction of the muscles. Linear visco-elastic
properties are assumed for the internal tissues, skin and
backbone. We found that, although these properties are
important, the precise values of the corresponding para-
meters are not critical in determining at least the muscle
activation pattern, as long as they are taken to lie in a
realistic range.

2. THEORETICAL MODEL

(a) Free beam model for a ¢sh swimming in water
In a moving system of coordinates (x, y,z), with the origin

attached to the anterior tip of the ¢sh, the £uid far away
moves in the positive x direction. The longitudinal axis, x,
passes through the centre of the cross-section of the body
(i.e. the backbone) when the ¢sh is straight and unloaded.
The mean surface of the undulating ¢sh is situated in the
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xy plane and the z-axis is in the lateral undulating
direction (¢gure 1).
The lateral movement of the median surface may be

taken as

z � h(x, y,t) (x, y 2 S), (1)

where S is the projected area of the median surface on the
xy plane. At present we do not consider spanwise (dorso-
ventral) deformation, so æh=æy � 0. This is realistic for
most ¢sh movement except for some parts of the tail or
extended ¢ns.

In our model, we treat the ¢sh as a free beam under-
going small amplitude bending oscillations. The lateral
bending is caused by the muscle contractile force, but it is
also in£uenced by inertial, viscous and elastic forces due to
all the tissues within the ¢sh body as well as by the
surrounding £uid. If the cross-sectional area of the body
at distance x from the nose is denoted as g(x), an arbitrary
in¢nitesimal segment of the ¢sh has volume g(x)dx (¢gure
1b). The forces and moments acting on this segment are
shown in ¢gure 2. We can write down the dynamic equa-
tion for this segment as follows (Cheng & Blickhan 1994),

æTq

æx
� Q � 0, (2)

ÿ æF
æx
� Ly ÿD � mb(x)

æ2h
æt2
ÿ æ
æx

Tq
æh
æx

� �
, (3)

ÿF ÿ æM
æx
� 0, (4)

where mb(x) is the mass of the body per unit length, Q(x,t)
is the longitudinal component of £uid shear and pressure
forces per unit length, Tq(x,t) is the longitudinal tension
induced by Q , Ly(x,t) is the lateral force exerted by the
water per unit length (i.e. the spanwise integrated pressure
di¡erence across the body), D(x,t) is the transverse viscous

drag per unit length, F(x,t) is the shear force in a cross-
sectional plane, andM(x,t) is the net bending moment.

Q , Tq and D are normally small compared with the
other quantities for a ¢sh which varies slowly along its
length, swimming at large Reynolds numbers, provided
there is no separation of the £ow around the body. So
terms associated with those quantities may be ignored in
the above equations. Then, (2), (3) and (4) become

æ2M
æx2
� ÿLy � mb(x)

æ2h
æt2

, (5)

as derived by Hess & Videler (1984). The boundary
conditions are that the shear force F(x,t) and bending
moment M(x,t) vanish at the free ends, giving

M � æM
æx
� 0 at x � 0,lB, (6)

where lB is the body length.This means that there are four
conditions to be applied to the solution of a second order
di¡erential equation (5). That is not normally possible;
the requirement that they should be satis¢ed imposes a
constraint on the form of the function h(x,t). This leads to
the so-called `recoil correction', which is further discussed
in ½ 3.

During body bending the contractile elements (cross-
bridges) of each muscle generate an active force which is
related to the length of the ¢bre and the rate of shortening
(Hill 1938). The collective action of all of the ¢laments at
position x generates a bending moment Mm(x,t): this in
turn is modulated by the passive properties of the ¢sh
body, which make a further contribution, Mp, to the
bending moment. The total bending moment M may thus
be written as a combination of these two contributions:

M �M(Mm,Mp), (7)

where the active bending moment Mm is caused by
muscular contractions which produce the time-varying
tension and compression, and are resisted by the passive
bending moment Mp due to the mechanical properties,
elastic and viscous, of the enclosed tissues.

(b) Strain in the body
Now we consider the strain in the body produced by

pure bending. Here small deformations of the body are
assumed so that the problem can be linearized. For large
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Figure 1. Coordinate system for swimming ¢sh. (a) Schematic
side view of ¢sh. (b) Schematic dorsal view of ¢sh and an arbi-
trary longitudinal segment of the body.
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Figure 2. Forces and moments acting on a longitudinal volume
element g(x)dx (hatched) of a ¢sh body.
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amplitude manoeuvres a large-strain analysis (van
Leeuwen et al. 1990) may be required, but the lack of
pertinent data makes that inappropriate at this stage.

Because no spanwise variations of any quantities are
assumed, the following description will be based on
deformations in the xz plane. For the volume segment
shown before bending in ¢gure 3a, we choose straight line
segments x1x2 and x3x4, which correspond to the xy plane
and a plane parallel to the xy plane, respectively. After
bending caused by the bending moment M in the cross-
sectional plane, x1x2 and x3x4 are changed into curved
segments x'1x'2 and x'3x'4 (¢gure 3b). It is assumed that
there is a neutral curve, corresponding to the median
surface of the body, i.e. the backbone, whose length does
not change. The slope at an arbitrary point on the neutral
curve, relative to the x-axis, is denoted by �. If we assume
that during bending the originally plane cross-sections of
the body remain plane and perpendicular to the back-
bone, then the lines x'3x'1 and x'4x'2 are both on radii of
curvature. The centre of curvature is at their intersection
C where the angle subtended is d�.The radius of curvature
of the surface through x'1x'2 is denoted by R.

We assume that the only normal stresses acting on a
cross-section are those caused by muscle contraction and
the passive mechanical response of the tissues. These
internal stresses have as their resultant the bending
moment M. It is expected that part of the cross-section
will be in tension and part in compression (¢gure 3c). The
neutral surface of zero stress, for example the median
surface through x'1x'2, separates these zones. From ¢gure
3b we have

x1x2 � x01x
0
2 � dx � Rd�,

x3x4 � dx � Rd�,

x03x
0
4 � (R� z)d�,

so the normal strain in the x direction is,

� � (R� z)d�ÿ Rd�
Rd�

� z
R
, (8)

which shows that the normal strain is directly propor-
tional to the distance from the neutral surface. Such a
theoretical description of the normal strain, in principle,
agrees with the real case for which deeper muscle ¢bres
are presumed to undergo smaller strains (Alexander 1969;
Rome & Sosnicki 1991).

For an arbitrary in¢nitesimal segment ds which
corresponds to the positive bending moment (¢gure 3b),
the angle at x'1 is � and at x'2 is (�7 d�). Therefore,

1
R
� d�

ds
� ÿ d�

ds
, (9)

as a positive increment ds in ¢gure 3b is associated with a
reduction of � by d� i.e. d��7d�. Because we assume a
small amplitude movement, then

dx � dscos� � ds, (10)

and

� � tan� � æh
æx

, (11)

and we have

1
R
� ÿ æ�

æx
� ÿ æ

æx
æh
æx
� ÿ æ2h

æx2
, (12)

where h is the lateral displacement (equation (1)).

(c) Visco-elastic assumption for passive elements in
the body

An important feature of the model, in principle, is the
the constitutive relation between stress and strain for the
tissues of the ¢sh body. The structural and mechanical
features of all tissues may conform to, or limit, the loco-
motor bending. Most elements within the ¢sh body, such
as septa, skin and backbone, may transmit force and
deformation from the muscle to the caudal ¢n, and
participate in the bending of the body (Wainwright 1984).
As quantitative information on the mechanical properties
of these elements is scarce, some basic assumptions about
the constitutive behaviour of biomaterials in ¢sh have to
be made.

In general, it is expected that all structural biomaterials
in the ¢sh will have some viscous behaviour because they
are hydrated, and all materials are also more or less
elastic. The sti¡est materials in the ¢sh are likely to be
bone or calci¢ed cartilage. At ¢rst we assume that the
¢sh body consists of several types of visco-elastic material.
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Figure 3. An in¢nitesimal longitudinal segment of a ¢sh body:
(a) geometry before bending; (b) geometry after bending; (c)
stress state after bending. (d) Sketch relating dh, ds, dx and �.
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At this stage it is reasonable to suppose that the power
unit, elastic unit and damping unit are arranged in a
parallel manner for an arbitrary body segment, and
experience the same strain (d�) during bending (Bowtell
& Williams 1991). Then the bending moment due to
muscle contraction, and the elasticity and viscosity of the
tissues, should be added together. This arrangement is
similar to a Voigt model in visco-elasticity theory (Fung
1981).We thus have

M �Mm �Mp �Mm �Me �Mv, (13)

whereMe andMv are the bending moments due to passive
elasticity and viscosity, respectively.

Unstimulated passive tissues are represented by simple
constitutive models. Assuming a linearly elastic and
viscous material, we have

�e � E� � E
z
R
, (14)

�v � �
æ�
æt
� �z æ

æt
1
R

� �
, (15)

where �e and �v are the normal stress on the cross-section
due to the passive elasticity and viscosity, respectively, E is
theYoung's modulus and � is the viscosity coe¤cient of the
tissue.

The bending moments caused by the elasticity and
viscosity at any position along the x-axis are thus

Me �
Z
A
z�edA �

1
R

Z
A
E( y,z)z2dA � EI

R
, (16)

Mv �
Z
A
z�vdA �

æ
æt

1
R

� �Z
A
�( y,z)z2dA � �I æ

æt
1
R

� �
,

(17)

where E and � are variable over the cross-section A, so
they cannot be taken outside the integrations. In our
beam model for the bending of the ¢sh body, the roles of
the elasticity and viscosity are re£ected by the combined
parameters EI and �I, which may be called the elastic
and viscous bending moduli, respectively. They are the
second moments of area of the cross-section about the y-
axis weighted by E and �, respectively, and depend on
the distribution of materials in the cross-section, and the
shape and dimensions of the section.
Looking at a typical cross-section, we see that the body

is composed of di¡erent biomaterials. We can roughly
divide the cross-section into three regions, excluding the
head and tail (¢gure 4).

1. The inner vertebral column region with constants E1
and �1.

2. The intermediate region of muscle and other tissues
with constants E2 and �2.

3. The outer skin region with constants E3 and �3.

Obviously, the mechanical properties of the three
regions may be quite di¡erent. In the present model, it is
assumed, in the absence of quantitative data, that the
material properties of each region are independent of
location along the ¢sh.

If the three regions are assumed to be uniform, the
weighted second moment of area of each region is the
product of its second moment of area and its constant
weight. The two integrals can then be replaced by two
summations, i.e.

EI �
X3
i�1

EiIi,

�I �
X3
i�1

�iIi.

(18)

It is reasonable to take the cross-sections of the ¢sh body
to be elliptical, and the backbone to be circular (still
excluding the head). Referring to ¢gure 4, the radius of
region 1 is taken as a1, the lengths of the semi-axes of the
ellipses corresponding to regions 2 and 3 as a2, b2, and a3,
b3, respectively.We thus have

I1 �
�

4
a41, I2 �

�

4
(a32b2 ÿ a41), I3 �

�

4
(a33b3 ÿ a32b2). (19)

Furthermore, we suppose that

a1 �
1
N

a3m, a2 � a3 ÿ�h, b2 � b3 ÿ�h, (20)

where a3m is the maximum value of a3, �h is the constant
skin thickness, and N(x) is a given function of x. For the
head (x4xh) it is assumed that only region 1 exists, so we
have

I2 � 0,I3 � 0, x4 xh. (21)

The normal stress owing to both viscosity and elasticity is

�pi � �ei � �vi �
zEi

EI
Me �

z�j

�I
Mv, i � 1,2,3. (22)
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a1a3

b2

a2

b3
2

3

1

Figure 4. Cross-section of ¢sh body, divided into three regions:
1, backbone; 2, muscle and other tissues; and 3, skin.
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In general, �p varies with z and, through the load Me and
Mv, and the body shape parameter Ii, with x.

(d) Stress caused by muscle contraction
In principle, a mathematical model describing the

active dynamic properties of ¢sh muscle could be
established following the work of van Leeuwen et al.
(1990), Altringham & Johnston (1990a,b) and Altringham
et al. (1993). Here, however, we will not go into so much
detail. If the active muscle bending moment required by
the entire system during body bending can be determined,
the muscle stress distribution may be approximately
calculated from it. Denoting the active muscle stress as
�m which is distributed over an area Am of the cross-
section, the bending moment produced by it about the
y-axis is

Mm �
Z
Am

z�mdA. (23)

At any instant, only one side of the ¢sh is activated while
the other side is passively deformed. We may therefore
suppose the active muscle force exists on one side and is
equal to zero on the other, for example,

�m �
�
�m z > 0
0 z < 0.

(24)

If we take �mas constant, equal to the average value over the
area Am/2, to simplify the integral (23), then we can calcu-
late the stress �m from the muscle bending moment, i.e.

�m �
Mm

J
, (25)

where J � RAm=2
zdA is the ¢rst moment of areaAm/2 about

thez-axis.Thus, ingeneral,�mvarieswithx throughMmand
also depends on the cross-section through J.
The active muscle region Am may be that occupied by

slow or fast muscle, or both. In steady-swimming slow-
muscle ¢bres, which lie as a thin strip directly underneath
and parallel to the skin along the lateral line, could be
responsible for force generation as observed in carp by
van Leeuwen et al. (1990). In the saithe, super¢cial fast
¢bres are recruited at around 5Hz during steady
swimming (Altringham et al. 1993), close to the frequency
of 4Hz to be used here fromVideler & Hess (1984). It is
probable that at low sustainable speeds only the most
super¢cial fast ¢bres, close to the slow ones, will be active.
As speed increases, deeper fast ¢bres will be recruited.
What proportion of area 2 is used at 5Hz is unknown: at
4Hz it is likely to be very small. When the fast muscle
¢bres are active during rapid steady swimming, Am will
be close to the area of region 2 in ¢gure 4 and
J � 2

3 a22b2 ÿ a31�
ÿ

.

(e) Dynamic equation
From (12), (16) and (17) we have

Me � ÿEI
æ2h
æx2

, (26)

Mv � ÿ�I
æ
æt

æ2h
æx2

, (27)

and

M �Mm ÿ EI
æ2h
æx2
ÿ �I æ

æ
æ2h
æx2

. (28)

Substituting (28) into (5), we have the di¡erential equation
governing the dynamic system:

æ2Mm

æx2
ÿ æ2

æx2
EI

æ2h
æx2

� �
ÿ æ2

æx2
�I

æ
æt

æ2h
æx2

� �
� Ly ÿ mb(x)

æ2h
æt2
� 0.

(29)

If we denote

Ly �
æ2Mh

æx2
, ÿ mb(x)

æ2h
æt2
� æ2Mi

æx2
, (30)

where Mh and Mi are the contributions to the bending
moment from the hydrodynamic and inertial forces,
respectively, then we have

æ2

æx2
(Mm �Me �Mv �Mh �Mi) � 0. (31)

This equation represents a dynamic system for the
swimmer's body constructed from a power source Mm,
sti¡ness unit Me, damping unit Mv, £uid reaction Mh,
and body inertia Mi. How the ¢sh controls, and the
system allows, swimming behaviour may be studied by
considering the interaction of all elements of the system.
This is a solid^£uid interaction problem, and in general
an iterative approach needs to be taken. Our approach is
to take the observed movements of the swimming ¢sh as
input, and use them: (i) to calculate the relative water
motion and the hydrodynamic loading, and hence Mh;
(ii) then compute the inertial contribution Mi; and (iii)
to estimate the passive contributions Me and Mv as
outlined above. Then the muscle bending moment Mm is
calculated from equation (31).We may call the problem to
be solved by this approach the `bending moment problem'.
Alternatively, we could use the EMG measurement on
swimming ¢sh and some kind of constitutive model for
the contractile elements (e.g. Hill's equation (Hill 1938)
with the constants obtained from experiments on isolated
muscle ¢bres) to infer Mm and input it to the dynamic
equation (29) to predict the swimming movement h (x,t)
(the `movement problem'), as suggested by Daniel et al.
(1992). A comparison between the distribution of Mm (x,t)
obtained in this way with that obtained from the bending
moment problem should lead to new physiological infor-
mation about the critical constitutive parameters (such as
E,� and muscle properties) and the ranges within which
their values should lie.

3. WAVING MOTION, HYDRODYNAMIC METHOD AND

RECOIL CORRECTION

The lateral motion of a steadily swimming ¢sh is gener-
ally periodic with respect to time. Thus the function h(x,t)
in equation (1) can be represented by a Fourier series.
Furthermore, the EMG studies of Wardle & Videler
(1993) have shown that the muscle activation frequency is
the same as the undulation frequency. This suggests that it
is appropriate for us to use a single frequency oscillation as

986 J.-Y. Cheng and others Acontinuous dynamic beam model for swimming ¢sh

Phil.Trans. R. Soc. Lond. B (1998)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


input to our linear dynamic model (Hess & Videler 1984).
Hence, we put

h(x,t) � h1(x)cos!(t ÿ �h(x)), (32)

where h1(x) and � h(x) are the amplitude and phase
functions, respectively, !�2p/Tt is the angular frequency,
andTt is the time period of the undulation.

If the undulation propagates along the body with a
constant wave speedV, (32) becomes

h(x,t) � h1(x) cos! �t ÿ (x=V � �0)�, (33)

where �0 is a constant determined by the de¢nition of the
time origin. From (33) we have

æ2h
æx2
� hxx1(x)cos! �t ÿ �hxx(x)�, (34)

where

hxx1(x) � h001 ÿ
!

V

� �2
h1

� �2
� 2

!

V

� �
h01

h i2( )1=2

,

�hxx(x) �
1
!
tgÿ1

2(!=V)h01
h001 ÿ (!=V)2h1

� �
� 1

V
x� �0

� �
.

As derived above (equation (12)), (æ2h=æx2)ÿ1 is equal to
the radius of curvature provided æh=æx is small, and this
will be used to calculate the passive bending moment. It
has been found that the displacement amplitude h1(x) is
close to an exponential function of x for many ¢shes,
which ensures that the lateral curvature wave has the
same constant wave speed as the lateral displacement
wave (Cheng & Blickhan 1994).
As stated in ½ 1, we assume that the ¢sh swims at

constant speed, U, along a rectilinear path. The ¢sh is
treated as an undulating plate corresponding to the
median surface of the body, and calculation of the
unsteady hydrodynamic forces acting on the body is
made by applying 3D waving plate theory (Cheng et al.
1991). The theory has previously been used to estimate
the bending moment distribution without considering the
internal tissues (Cheng et al. 1993; Cheng & Blickhan
1994). Recently, the theory has been improved to enable
more realistic shapes for the whole ¢sh body or for a
single ¢n to be modelled, and it has been employed to
study the morphological adaptation of the necking at the
peduncle (J.-Y. Cheng, unpublished observation). The
measured real outline of a ¢sh can be input directly to
calculations of the desired quantities.
The real motion of a ¢sh in water should satisfy the

recoil condition, or equivalently the end condition (6), to
the e¡ect that the net lateral force and torque provided
by hydrodynamic forces on the whole ¢sh should be equal
to the rate of change of its lateral translational and angular
momentum, respectively (Hess & Videler 1984; Cheng &
Blickhan 1994). Because of errors in our dynamic model
and in the assumed or measured lateral motion h(x,t) and
mass distribution mb(x), and, more signi¢cantly, to
inaccuracies in the theory used to calculate the hydro-
dynamic force, the end condition (6) might not be
satis¢ed. To obtain a net bending moment distribution
M(x,t) satisfying equation (6) the motion h(x,t) would

have to be modi¢ed by adding a rigid-body translation
and rotation of the whole body, the recoil hs(x,t), and so
the modi¢ed motion is

hrc(x,t) � h(x,t)� hs(x,t) (35)

where

hs(x,t) � A(t)� B(t)x. (36)

Because of the linearity of the problem, A and B can be
determined by using equation (6) and the corresponding
bending moment is calculated for the motion hrc(x,t).

It has been found that the recoil correction required by
the waving plate theory is much smaller than that
required by the elongated-body theory (Cheng &
Blickhan 1994). As recoil rotation leads to undesirable
energy loss (through vortex shedding from the top and
bottom of the body as it moves sideways), which would
presumably be minimized in the course of evolution, it
seems reasonable to regard the 3D waving plate theory as
better than the elongated-body theory in the calculation of
the unsteady £uid force on the ¢sh.

Because the bending moment due to the visco-elasticity
is given by the curvature of the median surface and its rate
of change, a rigid body motion makes no contribution to
Mp. The recoil correction process (Cheng & Blickhan
1994) made in calculating the total bending moment is
also not in£uenced by introducingMp.

4. NON-DIMENSIONALIZATION

The body length lB, undulation period Tt and water
density � are chosen as the reference length, time and
density to non-dimensionalize all quantities. It is
convenient to reformulate the relevant equations in terms
of complex variables. Because of the linearity of the
problem, all quantities such as the lateral displacement,
lateral hydrodynamic force, bending moment and normal
stress may be written in complex form as

h(x,t) � Re�~h(x) ei!t� � h1(x)cos!�t ÿ �h(x)�, (37a)

Ly(x,t)� q�Cpy � qRe�� ~Cpy(x)e
i!t� � q�Cpy1cos!�tÿ�L(x)�,

(37b)

M(x,t) � Re� ~M(x)ei!t� �M1(x)cos!�t ÿ �m(x)�, (37c)

�(x,z,t) � Re� ~�(x,z)ei!t� � �1(x,z)cos!�t ÿ ��(x)�, (37d)

where Re means `taking the real part of ', �Cpy is the co-
e¤cient of pressure di¡erence across the body, q�1/2�U2

is the dynamic pressure, and the angular frequency ! is
equal to 2p. Using these dimensionless variables, (5) or
(29) become

æ2 ~M(x)
æx2

� ÿ 1
2
�U2� ~Cpy(x)ÿ 4�2mb(x)~h(x), (38)

and

~M � ~Mm � ~Mp, (39)
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~Mp � ÿ�I
æ2 ~h(x)
æx2

, (40)

where ��(E +i2p�) may be called the complex visco-
elastic modulus, and �I the corresponding bending
modulus. The complex amplitude of the normal stress due
to the passive mechanical properties is then

~�p � ~�e � ~�v � ÿ�z
æ2 ~h
æx2
� �z
�I

~Mp. (41)

The boundary conditions require

æ ~M(x)
æx
� ~M(x) � 0, at x � 0,1. (42)

�Cpy(x) in (38) is calculated from the waving plate theory
in which a reduced frequency  and a wave number k are
used; they are de¢ned by

 � !lB
U
� 2�

U 0
, k � 2�lB

l
� 2�

V 0
, (43)

where U' andV'are dimensionless forms of the swimming
speed and wave speed normalized by lB and Tt (l is the
wavelength).

5. KINEMATIC AND DIMENSION PARAMETERS FOR

SWIMMING SAITHE

The data given in the literature for the saithe (Videler
& Hess 1984;Wardle & Videler 1993) are used to calculate
the bending moment distribution along the ¢sh. The
measured amplitude distribution of the movement for an
àverage' saithe is used as plotted in ¢gure 9.The quantities
were averaged from all sequences in the experiments. As
the measured movement of the head was not accurate
(Videler & Hess 1984), the calculation results for this part
may not be meaningful and analysis will be focused on the
remainder of the body. The measured distribution of body
mass per unit length of the saithe is taken from ¢g. 3b of
Hess & Videler (1984). Table 1 lists some body dimensions
and kinematic data on àverage' saithe. The wave speed,V
(or the wavelength, l), measured for the posterior half of
the ¢sh (the value for the whole body is also listed in
table 1) is chosen in our calculations. The side outline of
the saithe in ¢g. 3 of Hess & Videler (1984) is taken for
the shape of the waving plate. The in£uence of this shape
on swimming propulsion and dynamics is discussed else-
where (J.-Y. Cheng, unpublished observations).

We need to know the skin thickness and backbone radius
for the saithe.The only data available on skin thickness are
for eels: a 20-cm long elver had skin 150^180-mm thick
and a 56-cm long adult eel had skin 500^530-mm thick
(Hebrank 1980). Accordingly, a skin thickness of 500 mm
is assumed for adult saithe: the non-dimensional value is
0.00125. The ratio of skin thickness to maximum half-
width of the saithe is

�h
a3m
� 0:019 � 2� 10ÿ2. (44)

As the dimension of the cross-section of the backbone
normally decreases towards the tail, the ratio of the

maximal half-width of the body to the radius of the back-
bone is taken as 5 at x�0.2, increasing to 7 before the tail.

6. ESTIMATION OF VISCO-ELASTIC COEFFICIENTS

To use the present dynamic model we need to know
quantitatively the mechanical properties of all bio-
materials within the ¢sh body. However, there are almost
no available data for the saithe. Even for other ¢shes, the
available data are scarce. At present, we have to estimate
the visco-elastic parameters of the skin, backbone and
muscle for saithe on the basis of very limited information.

Considering the internal complexity of the ¢sh body,
the division of the cross-section into three regions is very
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Figure 5. The distribution of area moments of cross-section
along the body length in three regions. I1. I2 and I3: the second
moments of regions 1, 2 and 3. J: the ¢rst moment of half
the cross-section of region 2. Note that the left-hand scale is
logarithmic.

Figure 6. The ratio of the viscous and elastic bending moduli
of each region to the total bending modulus of the whole cross-
section against distance along the body. rem1, rem2 and rem3: the
ratio of elastic bending moduli of regions 1, 2 and 3; rvm2 and
rvm3: the ratio of viscous bending moduli of regions 2 and 3.

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


approximate. As a ¢rst step in modelling we will not
subdivide the three regions further but assume some
average properties for each.

(a) Region 1
Hebrank has studied the mechanical properties of

Norfolk spot and skipjack tuna (Hebrank 1982). Because
the spot can be described as a subcarangiform swimmer,
the measured data for it may not be far from those for the
saithe. Data from lateral bending tests on the backbone
might have been acceptable for our model, but unfor-
tunately they are incomplete and cannot be used.
Tension tests on vertebrae with intervertebral joints give
an exponential stress^strain regression

ln � � 0:86�� 9:82, (45)
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Figure 7. The visco-elasticity ratio A1 calculated from the
estimated parameters plotted against distance along the body.
For explanation see text.
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Figure 8. (a) The amplitude and (b) the phase distributions of
bending moment along the body length. HV: results of the
elongated-body theory (Hess & Videler 1984). Mh: £uid reac-
tion; Mi: body inertia; M: £uid reaction and body inertia; Mhh:
£uid reaction recoil corrected for a massless ¢sh;Mm: muscle; h:
displacement.
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Figure 9. The amplitude distributions of the movement along
the body length before (h) and after recoil correction made for
a ¢sh with (hrc) and without (hrchh) mass.

Table 1. Body dimensions and kinematic data for an `average'
saithe

total body length lB �0.40m
height of tail ¢n at trailing
edge

bt �0.24 lB
half span b �0.12 lB
body volume �0.0113 l3B
wetted area Ae �0:401 l2B
Reynolds number Re �UlB

V � 2� 105 ÿ 8� 105

time period Tt� 0:278 s

swimming speed U �0:86 lB
Tt

(U 0 � 0:86)

amplitude at the tail end hm �0:083lB
wave speed of undulation
(whole body)

V �0.98 lBTt

wave speed of undulation
(posterior half)

V �1:04 lB
Tt

(V 0 � 0:98)

ratio of swimming speed to
wave speed (whole body)

U
V �0:878

reduced frequency  �2�U 0 � 7:30

wave number k �2�V � 6:41
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where stress is in Nm72. Unlike that of the skipjack tuna
the backbone of the spot shows uniform sti¡ness along its
length, and is more £exible than in the skipjack tuna.

From (8) the maximum strain in the body is

�max �
z
R

� �
max
� ÿzmax

æ2h
æx2

� �
max

. (46)

For swimming saithe the maximum curvature occurs near
the tail (Videler & Hess 1984) and

æ2h
æx2

� �
max

� 4:0, (47)

i.e. 4/lB in dimensional terms. The radius of the backbone,
zmax, is about one-¢fth of the body half-thickness in the
middle, so we have

zmax �
1
5
a3m �

1
5
0:021 � 0:0042. (48)

Thus, the maximum strain of the saithe backbone might
be about

j�maxj � 0:0168 � 2%. (49)

At this value of strain, equation (45) gives the stress � to be
approximately 22 kNmÿ2. From ¢gure 4 in Hebrank's
paper, the �ÿ � curve can be viewed as linear for �53%,
and gives the following estimate of Young's modulus:

E � �

�max
� 1:1MNmÿ2. (50)

Bennet et al. (1987) also measured the mechanical
properties of the backbone in a cetacean (Phocaena) to
examine the in£uence of elastic mechanisms in the
cetacean tail on the energy cost of swimming: the question
has been re-examined by Blickhan & Cheng (1994).
Compression tests done on specimens consisting of two
half-centra with the intervening intervertebral disc
showed that the sti¡ness is slightly variable along the
vertebral column. The maximum value of sti¡ness from
their work is approximately

E � 13MNmÿ2. (51)

Thus, the Young's modulus of backbone in carangiform
¢sh may be taken as about 1.1^13MNmÿ2. In non-
dimensional form this gives

E1 � 5� 102 ÿ 6� 103. (52)

Although Hebrank's study shows that the loading
response curves of backbone also exhibit some hysteresis,
the viscosity of backbone is considered to be unimportant
compared with that of other regions and is neglected here:

�1 � 0. (53)

(b) Region 2
We have found no data for the passive mechanical

properties of ¢sh muscle. The Young's modulus for human
striated skeletal muscle has been estimated to be between
1MNmÿ2 (for muscle ¢bres) and 100MNmÿ2 (for pure
collagen), and for myo¢laments, calculated from statistical
theory, to be 1kNmÿ2 (Schneck 1992). In fact, region 2 is
composed of myomeres, myosepta and other connective

tissue, and in the middle section of the body there are
other units such as viscera, heart, and other parts of the
circulatory and digestive systems. Assuming that this part
is signi¢cantly less sti¡ than backbone, an average passive
Young's modulus for region 2 of around 105Nmÿ2 is taken,
giving a non-dimensional value

E2 � 50. (54)

The viscosity of striated skeletal muscle in vivo is
between ca. 106 and 108 poise, and for isolated muscle is
between ca. 104 and 105 poise at 37 8C (Schneck 1992).
The body temperature of the saithe rarely exceeds 15 8C
(all experiments on saithe muscle have been done at
12 8C). The passive viscosity of ¢sh muscle will probably
be no larger than that for human isolated muscle. Also
the elements other than muscle would have less damping
ability. We assume a viscosity for region 2 of 104^105

poise, or in non-dimensional form

�2 � 1:7--17. (55)

(c) Region 3
The ¢sh skin gives protection from the environment and

its special surface properties may help to reduce hydro-
dynamic drag. It may also act as an external tendon to
transmit the force of muscle contraction down the length
of the ¢sh (Hebrank 1980; Wainwright 1983). However,
recent measurements suggest that the role of skin is not
important in body bending (J. L. van Leeuwen, personal
communication). The tensile elastic modulus for eel skin is
14.6MNmÿ2 in circumferential and 3.5MNmÿ2 in longi-
tudinal directions, both measured on the steep part of the
J-shaped stress^strain curve (the horizontal part
corresponds to a process of change in ¢bre angle). For
shark, the longitudinal sti¡ness is 0.8^3.0MNmÿ2 and
may be controlled by internal pressure (Wainwright
1983). We therefore assume that the Young's modulus for
saithe skin is of the order of 3.5MNmÿ2 , or in non-
dimensional form

E3 � 1:7� 102. (56)

The viscosity of skin was studied in eel (Hebrank 1980),
but not quanti¢ed. Here, we assume the skin viscosity
coe¤cient to be of the same order of magnitude as that of
muscle, i.e.

�3 � 1:7--17. (57)

7. PASSIVE VISCO-ELASTICITY EFFECTS

(a) Free oscillation of the ¢sh body segment in air
An assessment of whether the above estimates of passive

mechanical properties are reasonable can be made if we
consider the motion of an inert segment of the body in
air, as done for the lamprey by Bowtell & Williams
(1991). For example, we could take a dead ¢sh by the
head, displace the caudal end sideways and then release
it. Common observation suggests that the ¢sh would
return to the straight condition without oscillating; that is
the body or body segment should be overdamped. This
would be yet more true for a shorter segment. It is
instructive to see whether the present model predicts that.
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The response of the model is governed by equation (31)
without either the muscle force term Mm or the hydro-
dynamic forceMh, i.e.

æ2

æx2
EI

æ2h
æx2

� �
� æ2

æx2
�I

æ
æt

æ2h
æx2

� �
� mb(x)

æ2h
æt2
� 0. (58)

For a short segment, the coe¤cients EI, �I and mb may be
taken as constant, so we have

EI
æ4h
æx4
� �I æ

æt
æ4h
æx4
� mb

æ2h
æt2
� 0. (59)

Employing the method of superposition of normal
modes, we take

h(x,t) �  (x)ei!t. (60)

Substituting into (59) yields

ÿ d4 

dx4
ÿ �4 � 0, (61)

where

�4 � mb

EI � i!�I
!2, (62)

and  (x) is a function of the coordinate x, de¢ning the
shape of the normal modes of oscillation. The general
solution of (61) can be expressed as

 (x)� C1sin�x�C2 cos�x� C3 sinh�x� C4 cosh�x, (63)

in which C1. . . C4 are constants which can be determined
in each particular case from the boundary conditions of
the problem. There are three types of end conditions
commonly used in beam theory: (1) hinged end,
 � ''�0; (2) ¢xed end,  � '�0; (3) free end,
 ''� '''�0; where a prime denotes di¡erentiation d/dx.
Here, we take the segment as a cantilever beam with one
end ¢xed (at x�0) and the other end free (x��l). The
boundary conditions for  are

 (0) �  0(0) �  0 0(�l) �  0 00(�l) � 0. (64)

By setting the characteristic determinant equal to zero,

sin��l � sinh��l cos��l � cosh��l
cos��l � cosh��l sinh��l ÿ sin��l

���� ���� � 0, (65)

we obtain the frequency equation for the body segment

cos��lcosh��l � ÿ1. (66)

The ¢rst ¢ve roots, for example, are

�n�l � 1:875,4:694,7:855,10:996,14:137. (67)

From (62), we therefore have

mb!
2
n ÿ i�I�4

n!n ÿ EI�4
n � 0, (67)

so the eigenvalues or complex `natural frequencies' are

!n �
i�I�4

n � i(�n)
2((�I)2(�n)

4 ÿ 4mbEI)
1=2

2mb
. (69)

If the system is indeed overdamped, the `natural frequen-
cies' can be written as

!n � i�n, (70)

where the �n are real and positive. From (69) this requires
that

4mbEI
(�I)2

4 �4
n . (71)

Since �1�l is the ¢rst root of the characteristic equation,
i.e. the one with smallest magnitude, it is su¤cient to have

mbEI
(�I)2

4
1
4

1:875
�l

� �4

. (72)

To see whether the above parameter estimates are
reasonable, we substitute them into the inequality (72).We
note ¢rst that, if the cross-section of the ¢sh body has
essentially the same shape from the head to just before the
tail, varying only in scale, then the left-hand side of (72) is
inversely proportional to the square of a typical dimen-
sionless width, say aÿ23 . Also, the right-hand side is
inversely proportional to the fourth power of the segment
length.Thus, the inequality is most likely to be satis¢ed for
wider, shorter segments. The main result is clearly that,
other things being equal, the tissue viscosity must be
large enough for the inequality to be satis¢ed.

From the estimates here, and the data of Hess & Videler
(1984), we ¢rst take data roughly according to the widest
section (recall that lengths are made dimensionless with
respect to body length): mb�0.03, b3�0.12, a3�0.06,
a1�0.01, �h�0.02a3, (refer to equations (19) and (20)).
We also take E1�103 (equation (52)), E2�50 (equation
(54)), E3�1.7�102 (equation (56)), and �2��3�17, the
highest value from equations (55) and (57). Then

EI � 1:2� 10ÿ3, �I � 3:4� 10ÿ4,

and inequality (72) is satis¢ed only if �l 5 0.38: i.e. the
segment length should be less than 28% of body length.
That is rather small, suggesting that long segments of ¢sh
may not be overdamped, but great accuracy is not to be
expected because the ¢sh is not uniform along its length
(as assumed) and the estimates for E and � are very
rough. In particular, an even larger value for tissue
viscosity would reduce the tendency to oscillation: if � is
multiplied by 4, the value of �l needed to satisfy (72) is
multiplied by 2.

(b) Distribution of passive e¡ects along the body
We now examine more closely the distribution of passive

e¡ects along the ¢sh body. The bending modulus depends
not simply on the viscous and elastic coe¤cients of the
materials in the body, but also on the dimensions and
shape of the cross-sections. The logarithms of the second
moments of the three regions and the ¢rst area moment of
half of region 2 are plotted against the body length in ¢gure
5 based on the data of Hess & Videler (1984). Excluding the
head and peduncle, the second areamoment of region 2, i.e.
I2 , is respectively three and two orders of magnitude higher
than that of regions1and 3, i.e. I1and I3.This means that for
the part of the body in 0.2 4 x 4 0.8, and if the three
regions consisted of the same materials, the bending beha-
viour of the whole body would be dominated by region 2.
However, the contribution of region 3 (skin) is at least one
order of magnitude higher than that of region1 (backbone).
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From the estimates in ½ 6, and the conclusions of ½ 7a, we
take characteristic values of the viscous and elastic coe¤-
cients of the three regions to be as shown in table 2, and
these will be used in subsequent calculations. In general,
the values of the elastic moduli are considered to be close
to reality in regions 1 and 3, but have considerable
uncertainty in region 2, probably the most important.
These values cannot be regarded as an accurate
description of the mechanical properties of a ¢sh body
and are used only to give an indication of the in£uence of
body tissues during bending in the calculated examples.
Indications of what would happen for larger or smaller
values of the moduli are also presented.

Denoting the ratio of elastic and viscous bending
moduli of each region to that of the whole cross-section
respectively as

remi �
EiIi
EI

, rvmi �
�iIi
�I

, i � 1,2,3, (73)

and taking the values in table 2, we plot the ratios of elastic
and viscous bending moduli against distance down the
body in ¢gure 6. For 0.24x40.7, rem2450%, and 20%5
rem3430% approximately. So in resisting local elastic-
bending region 2 provides the largest contribution with a
signi¢cant supplement from the skin, although region 2 is
much more compliant than either skin or backbone; rem2
decreases and rem1 increases towards the tail. At around
x�0.7, just before the caudal peduncle, the three ratios of
the elastic bending moduli are comparable. At the
peduncle, 0.754x40.9, the elastic bending modulus is
dominated by the contribution from the backbone. As we
have used the same viscous coe¤cients for regions 2 and 3,
the viscous bending modulus is almost totally determined
by the contribution from region 2.

The combined dynamic behaviour of the passive viscous
and elastic materials of the body is re£ected by the
complex fundamental frequency (69), as discussed in ½7a.
If we take a segment of length �l�0.2lB, then the right-
hand side of (72) takes the valueA0�1900. Corresponding
values of the left-hand side (A1) at di¡erent sites along the
body are plotted in ¢gure 7. They show, as expected, that
overdamping should occur on the trunk, but not neces-
sarily on the peduncle and tail.

In principle, the general motion of the ¢sh in water may
be obtained by solving equation (29) when the active
muscle bending moment is given; the general inhomo-
geneous problem can be solved as soon as the
homogeneous equation has been solved to give the
normal modes of free oscillation, because the motion can
be represented by a superposition of normal modes.
However, there are di¤culties in following this approach.
For example, because the coe¤cients in the equation, such
as �I and EI, are not constants for the whole ¢sh, we

cannot calculate the normal modes analytically. Further-
more, the hydrodynamic force cannot be written as an
explicit formula. For a slender eel-like ¢sh with an
approximately uniform body, it may be possible to derive
the motion analytically for a given distribution of muscle
bending moment, with the hydrodynamic force calculated
from the elongated-body theory. In general however, and
in particular for the saithe, it is not possible. That is why
we take the other approach here: start with the measured
displacement wave, and infer Mm from equation (29).

8. RESULTS AND DISCUSSION

(a) Bending moment distribution
In the present linear model, the bending moment

required from muscle contraction, i.e. the active muscle
bending moment, is determined by a simple sum of three
contributions: £uid reaction, body inertia and internal
tissue, as described by equation (31), i.e.

Mm � ÿ(Me �Mv �Mh �Mi) � ÿMp �M. (74)

The net bending moment M is balanced by the £uid
reaction and body inertia (Mh+Mi), which have previously
been calculated by using the same hydrodynamic method
and kinematic data (Cheng & Blickhan 1994). Each term
in (74) may be further explained as follows.

1. Mh: the hydrodynamic bending moment. This term
represents the bending moment required by a £exible
body, with no mass or in£uence of passive internal
biomaterials, swimming in water, performing the
measured undulation pattern and with recoil correction
calculated for a real saithe.

2. Mi: the inertial bending moment. This may be viewed
as being required when a £exible body, without the
in£uence of passive internal materials, `swims' in air
with the same body movement as in water.

3. Me, Mv and Mp: the elastic, viscous and total passive
bending moments. These would be equivalent to those
required by a £exible body without mass moving in air.

We will discuss each individual contribution and their
mutual operation. The calculation of each bending
moment is made by using the same movement pattern,
recoil corrected with respect to the measured pattern.
Note that such a movement already re£ects the in£uence
of body inertia as well as the hydrodynamics.

(i) Individual contributions, Mh, Mi and M
Figure 8a,b gives the amplitude and phase distribution

of Mh and Mi along the body, respectively. It can be seen
from ¢gure 8a that the amplitude of Mh, i.e. Mh1, is lower
than that of Mi along most of the body, and that both
increase from zero at the head, approach each other
towards the tail, and fall to zero at the tail tip. It is inter-
esting to note that the amplitude ofM is lower than that of
Mi along the whole body and much lower than both Mi1
and Mh1 when x40.7. Mh and Mi are not simply added to
determine the moment required from muscle contraction.
In fact, from ¢gure 8b Mi and Mh are almost 1808 out of
phase on the caudal part of the body. This means that the
required inertial bending moment is supplied by the £uid
reaction. The unsteady £ow produced by body bending
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E �

region 1 103 0
region 2 10 10
region 3 102 10
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not only promotes swimming propulsion but at the same
time can provide considerable bending moment to move
the body with its particular mass distribution. The model
therefore suggests that a swimming ¢sh uses the £uid reac-
tion to balance the change of local lateral momentum of its
body. In this way M, i.e. the bending moment required to
balance the combined £uid reaction and body inertia, is
largely reduced and muscle energy may be saved. Note
that these conclusions are independent of the choice of
passive mechanical properties of the ¢sh tissues.

From ¢gure 8b we ¢nd that the phase of Mh is almost
constant over the rear-half of the body. This means that to
undulate the body in water a standing wave of side-to-side
force on that part is needed to balance the £uid reaction.
Hess & Videler (1984) suggested that a standing wave of
bending moment may be required to balance the
combined £uid reaction and body inertia. However, later
studies (Cheng et al. 1993; Cheng & Blickhan 1994)
suggested that such a bending moment still behaves as a
travelling wave although its speed is much greater than
that of body bending. This is seen in ¢gure 8b, which also
shows that the inertial bending moment travels faster than
body curvature and more slowly than the hydrodynamic
bending moment. The wave speeds of the bending
moments due to each mechanism, averaged over
0.314x40.5 and 0.54x40.85 from the present calcula-
tions, are given in table 3.

If we consider a massless saithe-like `¢sh', i.e. assume
mb(x)�0 and use the measured movement of the saithe as
input, the recoil-corrected bending moment, Mhh, is also
as shown in ¢gure 8. The displacement amplitudes along
the body before and after recoil correction are given in
¢gure 9. Of course this case does not exist in reality, but
is used to show other theoretically possible forms of the
hydrodynamic bending moment distribution.The massless
`¢sh' achieves a larger recoil than a real saithe and the
variation of the amplitude of undulation is smaller (¢gure
9). However, the required bending moment behaves as a
forward travelling wave, i.e. the wave of muscle
contraction should start at the tail and move gradually

forward (¢gure 8b). This ¢nding emphasises how external
hydrodynamic processes can signi¢cantly in£uence the
internal dynamics.

(ii) Individual contributions, Me, Mv and Mp
The bending moment distribution due to elasticity,

viscosity and total passive properties within the body, i.e.
Me, Mv and Mp, are given in ¢gure 10a,b, where they can
be compared to the distribution of M (note that the scale
of ¢gure 10a is di¡erent from that of ¢gure 8a). The
amplitude of Mp is very close to that of Mv, and both are
larger than Me except in the peduncle region, as required
by the overdamping condition. The amplitudes of Me, Mv
and Mp are close to each other on the narrow neck of the
peduncle and the tail, where the viscous bending moment,
dominated by the contribution from region 2, is reduced
and the elastic backbone (region 1) becomes important
(¢gures 5, 6 and 7).
The greatest uncertainty in our estimates of the passive

mechanical properties lay in the value of E2, which
dominates E over the central part of the ¢sh body.
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Table 3. The average speeds of the bending moment waves along
the body length, measured in body lengths per tail-beat period

(EMG-onset data: saithe, Wardle & Videler (1993); carp, van
Leeuwen et al. (1990).)

speed between
0.314x4 0.5

speed between
0.54x40.85

h 1.01 1.14
hxx,Me,Mv 1.31 0.91
Mh 0.64 13.83
Mhh 75.55 72.04
Mi 2.71 2.46
M 8.42 5.86
Mp 1.29 0.73
Mm 1.32 2.19
Mm 1.54

(0.314x40.69)
ö

EMG-onset (saithe) 1.571.6
(0.44x40.65)

ö

EMG-onset (carp) 1.6 ö
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Figure 10. (a) The amplitude and (b) phase distributions of
bending moment along the body. Me: elasticity; Mv: viscosity;
Mp: total passive mechanical properties;M: both £uid reaction
and body inertia; Mm: muscle activation required by the
mutual operation of all factors.
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However the results of ¢gure 8a show that even if its value
were ¢ve times larger the amplitude ofMe (proportional to
E) would still only be comparable with Mv (given our
estimated �2) and the maximum of Mp would increase by
a factor of about

���
2
p

. The last result follows from writing
Me,Mv andMp in a form similar to (37), and from (40) the
amplitude Mp is

Mp1(x)� (EI2� (2��I)2)1=2hxx1(x)� (M2
e1�M2

v1)
1=2.

(75)

Thus, ¢gure 10a would not be greatly a¡ected by such an
underestimate. It would be even less a¡ected if E2 were an
overestimate, because Me would become negligible. An
increase in the value of �2 would have a proportianally
greater e¡ect, becauseMv is estimated to be larger thanMe.

However, no changes in the absolute values of the
passive mechanical moduli will have much e¡ect on the
phases of the Me, Mv, and Mp waves (¢gure 10b), at least
as long as the relative distribution of the di¡erent mate-
rials remain mostly unaltered. From ¢gure 10b, we see
that the wave speeds of the elastic and viscous bending
moments and the bending curvature (not shown) are the
same. From (26), (27) and (40), the phase functions of the
bending moments Me, Mv and Mp can be determined as

�Me(x) � �hxx(x)ÿ
1
2
, (76a)

�Mv
(x) � thxx(x)ÿ

1
2

� �
ÿ 1
4
, (76b)

�Mp
(x) � �hxx(x)ÿ

1
2

� �
ÿ 1
2�

tgÿ1
2��I
EI

� �
, (76c)

where �hxx(x) is given by (34). There is a constant phase
di¡erence, i.e. a quarter of one period, between Me and
Mv. Because �I and EI are not negative, we have

04 tgÿ1
2��I
EI

� �
4

1
4
. (77)

This means that under the present linear assumption, no
matter what magnitudes the mechanical moduli of the
biomaterials in the ¢sh may have, the phase of their
bending moment wave must be within the range bounded
by those of Me and Mv, i.e. the hatched area shown in
¢gure 10b. From the ¢gure we can see that the wave speed
of Mp may be a little lower or higher than that of the
bending curvature, but cannot be higher than that of M.
The wave speeds calculated by using the present para-
meters are also given in table 3.

(iii) Muscle contribution Mm
When all the relevant factors are combinedöhydro-

dynamic, inertial and passive mechanicalöwe can ¢nally
estimate the bending moment generated by the muscle
itself, Mm. This has been given in both ¢gure 8 and ¢gure
10. The amplitude of Mm is higher than both Mp and M
along most of the ¢sh's length before the narrow peduncle.
Its peak position (x � 0:6) is located behind the mid-point
and between that of Mp (x � 0:45) and M(x � 0:65).
Thus, the maximum bending moment is predicted to be
produced by the muscle at x � 0:6. The phase of Mm is

between that of Mp and M on the middle part of the
body. The wave speed of Mm (see table 3 and ¢gure 10b)
is lower than that of M and higher than that of Mp. Of
course, if the passive elastic moduli were larger, then Mm
would tendmore toMp; if smaller, it would tendmore toM.

The behaviour of the muscle bending moment is consid-
ered to correspond to that of muscle activation. EMG
studies show that muscle activation is strictly left^right
alternating. Therefore, it is appropriate that the muscle
bending moment be described by a wave function with a
time-averaged value of zero, as contraction is de¢ned as
positive on one side and negative on the other (¢gure 3).
The activation of the muscle in saithe has been found

experimentally to behave like a travelling wave, with an
average speed (EMG-onset) of 1.4^1.6 body lengths per
period of undulation for 0.44x40.65 (Wardle & Videler
1993), which is faster than the wave speed of undulation:
about one body length per period. A similar result can be
estimated from the measurements on carp (van Leeuwen et
al. 1990) to give a speed of 1.6 lengths per period. Rather
surprisingly, given the uncertainties of the model, the
predicted average wave speed of the muscle bending
moment Mm for 0.314x40.69 (see table 3), covering the
range of body lengths studied in EMG measurements, is
1.54 body lengths per period, which is almost the same as
that obtained from the EMG.

(b) Activation pattern of the contractile element
As seen here, the time course of Mm corresponds to the

time-course of muscle contraction derived from EMG
experiments. The onset and end of EMG activity in the
left side of a swimming saithe (or mackerel) at two
positions x�0.4 and 0.65, and the time-course of the
maximum muscle bending moments along the body
length calculated by the present model, are shown in
¢gure 11. Zero and one on the vertical time axis corres-
pond to the instant before the tail tip shows any motion
in the right-going tail sweep. The duration of EMG
activity decreases along the body; the duration of the
muscle bending moment remains constant everywhere
(half the tailbeat period) and is shown by the shaded
area in ¢gure 11, within which any phase curve represents
the propagation of a ¢xed oscillating phase.

As the wave speed of Mm is very close to that of EMG-
onset, the phase curve of Mm-onset, i.e. the wave front of
Mm, maintains an almost constant phase di¡erence (about
12%Tt) from the EMG-onset. This is related to the
observed time delay between the EMG signal and
the peak force (or bending moment) generation owing to
the mechanical and contractile properties of muscle: 25^
45ms in the saithe (Altringham et al. 1993). As the
measured period isTt�0.278 s, for saithe, this additional
delay is of the order of 10% of a cycle. The theoretically
predicted time-course of the onset of the muscle bending
moment is therefore quite close to that of muscle force
generation. It follows that, in steady swimming, the
observed muscle activation pattern closely matches the
dynamic response of the entire system of the body and
water as calculated here.

Figure 11 shows that the duration of EMG activity
decreases towards the rear of the ¢sh, and is always
shorter than the duration of the muscle bending moment,
which is constant at half of one tailbeat cycle. The
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maximum bending moment occurs within the EMG
period anteriorly, but after it posteriorly.

Why the end of the EMG signal is di¡erent from the
calculated end of the Mm wave is not clear at present. The
constant duration of the bending moments along the body
length is a direct outcome of the linear model used here.
Nonlinearity in the mechanical properties of the internal
tissues and in the hydrodynamic force may make the
hydrodynamic and passive bending moments have a
di¡erent duration or time-dependence relative to body
bending. In this way the behaviour of Mm could be
changed. The linear assumption holds for small amplitude
undulations and is generally not far away from the real
situation for steady carangiform swimming in ¢sh such as
saithe. Perhaps a more important e¡ect is nonlinearity of
the contractile and mechanical properties of active muscle.
It is thus important to examine whether the active phase of
muscle contraction, i.e. the measured duration of the
EMG activity, can produce a force duration close to the
observed half-period of body undulation. This has indeed
been observed byAltringham et al. (1993) who also showed
that the active properties of the muscle vary along the
body length (see next section for further discussion).

As discussed in ½ 8a,ii, the wave speed of Mp is close to
that of curvature. So during bending, the dynamic
response of the passive internal tissues has only a small
phase di¡erence with respect to the local strain along

the body. Mi and particularly Mh have much higher
wave speed than body curvature, and both have a vari-
able phase di¡erence with the local strain. As the result
of interaction among the dynamic processes of the
internal tissues, and £uid and body inertia, a wave of
muscle bending moment is needed, from the muscle acti-
vation, with a speed greater than that of body bending.
Thus, a faster wave of muscle activation with a variable
phase relation between the strain and activation cycle
along the body, as observed in EMG studies (Williams et
al. 1989; van Leeuwen et al. 1990;Wardle & Videler 1993),
is found from the present study to be required by the £uid
dynamic mechanism and, to a lesser extent, the body
inertia force.

(c) Body bending and hydrodynamic propulsion
Many studies on the pattern of muscle contraction in

¢sh have been related to the hydrodynamic propulsion
generated by the body and tail (Hess & Videler 1984;
Williams et al. 1989; van Leeuwen et al. 1990; Wardle &
Videler 1993; Altringham et al. 1993). Based on the point
of view that the lateral hydrodynamic force acting on the
caudal ¢n might be in phase with the lateral velocity
(Lighthill 1977), e¡orts were made to relate the timing of
muscle activity to maximal thrust by the caudal ¢n in
carangiform ¢sh.

First, the hydrodynamic lateral force on a ¢n is known
to have a phase delay behind the lateral velocity of the ¢n
because of shedding of vortices at the trailing edge.
Lighthill suggested that the `Wagner e¡ect', i.e. the phase
delay, may vanish when the reduced frequency of a 2D
rigid oscillating plate reaches a value close to 0.7 (Lighthill
1977). However, we know that the Theodorsen function
determining the phase of the lateral force is very sensitive
to frequency at low values. Furthermore, the tail of a
carangiform ¢sh is not rigid. From the kinematic data for
saithe and other ¢shes, there can be a phase di¡erence of
up to one tenth of the undulation cycle in the lateral
velocity itself between the leading and trailing edges of
the tail. So the lateral hydrodynamic force acting on the
tail is not necessarily in phase with the lateral velocity of
the tail tip (trailing edge).

Second, the lateral force is not equivalent to the thrust,
which is the component of the force in the swimming
direction. The thrust is determined by the distribution of
the lateral force multiplied by the local angle of attack on
the tail. In general, the maximal thrust also does not
occur at the instant of maximal lateral force.

According to the 3D £exible plate model of ¢sh
swimming (Cheng et al. 1991), the total thrust due to
pressure di¡erences on the plate, the hydrodynamic
power to maintain the movement of the plate in water,
and the lateral force can be derived, and their coe¤cients
can be written as

CTp
� CTp0

� CTp1
cos2!t � CTp2

sin 2!t

� CTp0
� CTp3

cos2!t(t ÿ �CTp
)

CE � CE0 � CE1 cos2!t � CE2 sin2!t

� CE0 � CE3 cos2!(t ÿ �CE) (78)

CL � Re( ~CLe
i!t) � CL1 cos!(t ÿ �CL).
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The cycle period of thrust and power is half that of the
displacement. By using the same data as in the bending
moment calculation, the propulsive energetic quantities
may be obtained. The phase of maximal thrust, power
and lateral force: �CTp, �CE, �CL are also shown in ¢gure
11.

From the present results we can see that the thrust
produced by the whole body undulation, but mostly by
the tail, lags the lateral force a little, and is close in phase
to the lateral velocity not at the tail tip but in the peduncle
region in agreement with Altringham et al. (1993): see
their ¢gure 8, where the caudal peduncle crosses the
swimming track as peak muscle power is generated. The
maximal thrust and lateral force occur at the instant of
maximal muscle bending moment anterior to the middle
point of the body, and both occur before the muscle is
switched o¡. The hydrodynamic bending moment at the
rear is almost in phase with the hydrodynamic power
required to maintain undulation of the plate in water.

Only in the anterior part of the body does force
development by muscle activation coincide with propulsive
force generation at the tail. Thus it may be suggested that
the pattern of muscle activation within the body is not the
same as that of thrust development but is determined by
the operation of the whole system. A wave of muscle
activation travelling faster than that of body bending is
enforced by the hydrodynamic reaction, and limited by
the passive internal tissues.

(d) Stress distribution
The longitudinal distribution of maximal passive stress

at the outer boundary of each region of the cross-section
can be calculated by equation (22), and the result is
shown in ¢gure 12. Only the stress amplitudes are given,
as the phases are similar to those of passive bending
moment. The passive stress in the backbone is much
higher than in the other two regions although it experi-
ences smaller strain. At any instant, muscle contracts only
on one side of the body and the backbone may serve to
resist deformation to form a neutral surface in realizing
body bending, with the strain being anti-symmetric to
that surface on any cross-section. With the support of the
backbone the local bending is resisted mostly by region 2
(see ½ 7b). The backbone, and secondarily the skin, like a
`drive shaft', play a role in transmitting force and deforma-
tion to maintain and adjust the movement of the body and
particularly the tail.
The average active muscle stress is also given in ¢gure

12, based on equation (25). The fast muscle is assumed to
be active during steady swimming as shown in table 1, and
to be distributed over region 2 of the cross-section. In fact
the fast muscle only occupies a part of the region 2, as
discussed in ½ 6. Hence, the muscle stress distribution will
not be as steep as that shown in the ¢gure. It is clear from
¢gure 12 that higher active stress is required from the rear
part of the body, before the tail, where there is less muscle
and high strain. In this region muscle is being stretched
during the onset of force generation and this probably
enables the muscle to sustain the high stress shown in
¢gure 12 (Altringham et al. 1993). Altringham et al. (1993)
suggested that those myotomes in x40.65 generate power
at some phase of the tail beat after sti¡ening to transmit
rostral power to the tail, but with increasing proximity to

the tail, the muscle does less positive work, and may yield
net negative work. More precise EMG data and dynamic
measurements are needed on muscles from the caudal
region. Theoretical modelling may also need to be
improved to consider possible nonlinear e¡ects at higher
strains.

9. CONCLUSION

To understand how the entire locomotor system of a ¢sh
is designed to interact with the surrounding £uid to
produce undulatory swimming movements, a dynamic
model is presented which integrates contributions from
active muscle contraction, passive internal biomaterials,
body inertia and the £uid reaction. A parallel arrange-
ment of the power unit, passive elastic unit and passive
viscous unit on any longitudinal segment of the body is
assumed. It is estimated that, during bending of the body,
in the trunk the passive internal tissues show overdamping
behaviour dominated by the myotomal muscle, and in the
peduncle the elastic backbone determines local behaviour.

The body bending moment distributions corresponding
to individual mechanisms and their mutual operation are
analysed.The £uid reaction needs a bending moment with
increasing amplitude towards the tail and near standing
wave behaviour on the rear-half of the body. The inertial
movement of the body results from a bending moment
wave with increasing amplitude towards the tail and a
higher wave speed than that of body bending. The £uid
reaction, mainly designed for propulsion, also provides
considerable force to balance the local momentum change
of the ¢sh body and hence to reduce the contribution
required from muscle on the rear part of the body. The
wave of the passive visco-elastic bending moment, with
an amplitude distribution peaking a little before the mid-
point of the ¢sh, travels with a speed close to that of body
bending.

The distribution of muscle bending moment, calculated
from the whole dynamic system, has a wave speed almost
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the same as that of the EMG-onset, and a starting instant
close to that of muscle activation.This suggests a consistent
matching between the muscle activation pattern and the
dynamic response of the system in steady swimming. A
wave of the muscle activation, faster than that of bending,
with a variable phase relation between the strain and the
activation cycle arises basically from the £uid dynamic
mechanism and, to a lesser extent, the body inertia, and
is limited by the passive internal tissues. In general, the
active muscle force development does not coincide with
propulsive force generation on the tail.
The sti¡ backbone may play a role in transmitting force

and deformation to maintain and adjust the movement of
the body and tail in the water. Higher active stress is
required from caudal muscle.

The present model is limited by its basic assumptions,
such as the linear and parallel arrangement of the active,
elastic and viscous units within the body, the linear hydro-
dynamic theory and so on. More careful consideration is
also needed of the caudal part of the body. Our estimates
of tissue elastic moduli are very uncertain but, perhaps
surprisingly, large errors in their values would have little
qualitative e¡ect on the predictions.

J.Y.C. was a postdoctoral fellow funded by a grant from the
University of Leeds Academic Development Fund to support
interdisciplinary research in Mathematical Biology.
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